其他行业
基于高光谱的茄子外部缺陷检测
发布时间:2024-06-21
本文链接:www.gaoguangpu.net/laji/162.html

image.png

茄子又称昆仑瓜、矮瓜、落苏和酪酥等,属于非呼吸跃变型果实,起源于亚洲东南热带地区,西汉时传入我国。茄子富含膳食纤维、维生素、多酚、蛋白质和矿物质等多种营养物质,具有降血脂、防治高血压和糖尿病、保肝以及抗氧化等保健功效。茄子的生产和开发利用市场前景广阔,然而茄子存在木栓化和烂果等缺陷问题,严重影响了茄子的产量和品质,进而降低了其商品性。木栓化可能是高温或者气候变化异常导致茄子钙硼缺失引起;烂果则可能由虫害、菌害、雨水和光照等因素造成。在实际生产过程中,将茄子木栓化和烂果样本剔除仍然靠人工来完成,不仅耗时耗力、效率低下,还易造成漏选,因此实现一种能够快速、准确识别木栓化和烂果茄子的方法则尤为重要。

高光谱成像技术将光谱分析技术和数字成像技术相结合,可以同时获得样本大量波段的空间图像信息和每一像素点的光谱信息,具有灵敏度高、测量速度快和抗干扰能力强等优点,广泛应用于农产品无损检测、病害检测等领域中。

本研究采用高光谱技术对茄子完好、木栓化和烂果进行检测,通过多种预处理方法对原始光谱数据进行预处理,并建立PLS判别模型比较分析,选择最佳预处理方法进行后续研究。采用SPARCCARS对预处理后的光谱数据提取特征波长,基于特征波长分别建立PLSMLR判别模型进行比较分析,以实现对茄子缺陷的定性判别,为进一步开发茄子在线分选装备提供了理论依据。

1材料与方法

1.1试验材料

为保证研究的可靠性,采摘时选择大小(单果质量450 g-680g)均匀,形状为近圆球形以及缺陷类型(完好、木栓化和烂果)齐全得茄子作为试验样本,图1所示为3类样本图。对其表面泥土进行清理共挑选252个样本,包含完好样本170个,木栓化样本60个和烂果样本22个。采集各样本的高光谱图像,然后从中提取252个光谱数据,运用Kennard-Stone算法将3类样本按近似3:1的比例随机划分为校正集样本189个和预测集样本63个。

image.png 

2 基于高光谱数据的茄子外观品质定性判别分析

2.1茄子完好、木栓化和烂果3种区域的平均光谱曲线图

使用ENVI4.7软件的提取感兴趣区域(ROI)函数分别提取茄子的木栓化、烂果和完好3种区域的光谱数据,然后计算并求取各类样本的平均光谱,如图2所示。“紫瓜”茄子呈类球状,且表皮光滑发亮,导致采集到的高光谱图像中间区域漫反射强度大、信噪比高,影响建模精度以及试验可靠性。因此,在利用ENVI4.7提取感兴趣区域时应避开中间反光区域。

image.png 

由图2可知,完好茄子、木栓化区域和烂果区域的平均光谱曲线具有很大差别,在900~1300 nm范围内,完好区域的反射率最高,原因可能是完好茄子表皮光滑,对光的反射最强;在1200 nm附近的3种曲线均为波谷,这是由于茄子表皮叶绿素的C-H基团二级倍频吸收作用12;大于1350nm的波段范围,完好区域的反射率低于木栓化和烂果区域的反射率。

2.2特征波段提取

特征波段来源于全光谱波段,携带其最重要的光谱判别信息。其作用主要有:消除原始数据的线性相关性、奇异性和不稳定性;降低数据维数,减少变量数,排除多余的干扰信息等。特征波段的提取直接影响模型建立的效率以及建模后预测结果的可靠性和准确性。

2.2.1连续投影法(SPA)

连续投影算法是一种使矢量空间共线性最小化的前向变量选择算法。作为一种新兴的特征波长筛选方法,它能够有效消除波长变量之间共线性的影响,进而有效提取出特征波长变量。对normalize预处理后的样本光谱数据进行SPA特征波长提取,如图3所示。当特征波长数为14时,RMSE值为0.3274,且值达到最小;所提取的特征波长分别为:931.02924.641399.291093.68950.17902.31380.211147.86895.911345.231265.681332.51173.34982.08 nm,其重要程度依次递减。

image.png 

2.2.2回归系数法(RC)

image.png 

回归系数法[15(RC):通过对预处理后的样本光谱数据建立PLS判别模型,并从模型中提取回归系数。本研究选取了9个特征波长值,分别为9249781103120213671402158616661681 nm,所依据的原则为:将局部极值作为特征波长值,如图5所示。

image.png 

3结论

3.1基于高光谱技术采集茄子样本的高光谱数据。比较原始光谱数据和经过多种预处理方法预处理后建立PLS模型,结果表明,经Normalize预处理后的PLS判别模型效果最佳,其校正集决定系数R²为0.74,均方根误差RMSEC0.33;其预测集决定系数Rp²为0.85,均方根误差RMSEP0.26

3.2采用SPARCCARS分别对Normalize预处理后的光谱数据提取特征波长,基于特征波长分别建立PLSMLR模型。比较多种模型可知,CARS-MLR模型效果最优,其校正集决定系数R²为0.94,预测集决定系数Rp²为0.90,RMSECRMSEP分别为0.190.21,预测集判别准确率达到96.82%,较好地实现了茄子外部缺陷的检测。

 


高光谱相机系列

  • VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR(400-1700nm)高光谱分析系统单传感器光路实现(400-1700nm)高光谱探测;光谱分辨率小于18nm ;空间分辨率640;
  • 无人机高光谱激光雷达测量系统 FS64-UCR
    无人机高光谱激光雷达测量系统 FS64-UCR
    FS60-UCR系列无人机高光谱激光雷达测量系统是一款多功能无人机检测设备,集激光雷达和高光谱成像为一体,获得激光雷达和高光谱图像数据。
  • 便携式高光谱相机FSIQ系列
    便携式高光谱相机FSIQ系列
    FigSpec®FSIQ系列便携式高光谱相机是一款内推扫高光谱相机,波长范围400-1700nm,光谱分辨率(FWHM)可达2.5nm,空间分辨率高达1920*1920,光谱通道数量高达1200,通过5寸触摸屏显示和操作,分辨率1280*720主要功能工作模式:高精度成像测量模式、PC操控模式、线扫描模式用户调整:用户可以对曝光时间,合并方式,ROI区域进行
  • 云台高光谱测量系统
    云台高光谱测量系统
    FS系列云台高光谱测量系统是结合高光谱相机和云台设备的测量系统,可实现对拍摄区域的实时监控,支持自动扫描,网络连接。可应用于河道、湖泊、林业、农业、塔基等基于高光谱技术的分析检测领域产品特点光谱范围:390-1010nm光谱通道数:1200光谱分辨率:2.5nm云台水平范围:360°云台垂直范围:正90°~负90°网络连接:支持
  • FS-50系列多光谱相机
    FS-50系列多光谱相机
    FigSpec FS-50系列是彩谱科技公司推出的新一代无人机载多光谱相机,适配大疆M350/M300RTK飞行平台,具有30-180个光谱通道,2K分辨率。 满足精准农业、军事国防和国土安全、灾害防治林业监测、河湖生态、目标识别等多种行业应用需求。一、产品特点●超高光
  • 高光谱相机(线扫描) FS1X系列
    高光谱相机(线扫描) FS1X系列
    FigSpec®FS1X系列高光谱相机包含可见光(400-700nm)、可见光近红外(400-1000nm)、可见光近红外短波红外(400-1700nm)、短波红外(900-1700nm)、短波红外(1400-2500nm)5种光谱区域,广泛应用于印刷,纺织等各种工业制品的表面颜色纹理检测(颜色测量单像素重复性可达dE*ab<0.1),成分识别,物质鉴别,机器视觉,农产品品质等领域。
  • 成像高光谱相机 FS2X系列
    成像高光谱相机 FS2X系列
    FigSpec®系列成像高光谱相机采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机、结合内置扫描成像及辅助摄像头技术,解决了传统高光谱相机需外接推扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像的快速采集。可见光/近红外:· 光谱范围:400-1000
  • 显微高光谱成像系统
    显微高光谱成像系统
    ·将显微镜及成像光谱仪两者的优点结合,可以随时对显微图像进行高光谱数据采集。·可以对现有的生物显微镜、荧光显微镜、体视显微镜、金相显微镜等进行改造,方便地把普通显微镜改造为高光谱显微镜。·客户可以根据需求定制显微镜型号。· FigSpec?系列成像光谱仪在内部集成了视觉相机和高光谱相机,可以使
  • 机载高光谱相机FS60-C系列
    机载高光谱相机FS60-C系列
    ● 采用大疆M300RTK(大疆M600Pro可选)作为飞行承载平台;● 采用高信噪比超高速光谱扫描成像器件,提供高稳定性的光谱图像采集;● 采用自研的高效率低功耗图像处理算法,大大延长了整机飞行时间,降低了系统功耗;● 通过实时测量植物、水体、土壤等地物的光谱图像信息,应用与精准农业,农作物长势与产

Copyright © 2023 彩谱科技(浙江)有限公司 All Rights Reserved. ©️ 版权所有 浙ICP备2021027346号-7

  • 首页
  • 产品
  • 案例
  • 联系
  • 顶部