医药行业
基于近红外光谱图像特征学习的烧伤深度检测方法研究
发布时间:2023-06-06
本文链接:www.gaoguangpu.net/yiyao/52.html

  本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS25进行相关研究。FigSpec?系列成像高光谱相机采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机、结合内置扫描成像及辅助摄像头技术,解决了传统高光谱相机需外接推扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像的快速采集。

图片1.png

  据数据统计全球烧伤患者需要进行医疗护理的人数接近1100万人,在所有伤情中排名第四,高于结核病和艾滋病毒感染的总和。即使在经济发达的美国,每年就有200 多万例烧伤病例,其中约有2万名患者(1%)遭受严重的烧伤,需要进入专门的病房进行手术和护理。在烧伤学科中,准确检测患者烧伤创面深度是一个非常重要的研究方向,其诊断结果关系到后续创面的感染和增生性瘢痕的概率。目前烧伤深度的诊断主要靠临床医生的主观经验来判断,但其诊断准确率仅为65%-70%。因此,迫切需要一种无创、高效的烧伤深度检测方法。NIRSD是一种无创、非接触的光谱检测技术,可以检测烧伤皮肤组织结构的变化,因此可以用于皮肤烧伤深度的诊断和分析。然而,目前该方法在烧伤深度检测领域的研究很少,限制了近红外光谱技术在烧伤深度检测中的应用。近红外光谱技术具有非侵入性、非接触性和快速的特点,是最有价值的分析技术之一。该技术主要研究C-H、N-H、O-H、S-H、P-H等基团在近红外范围(780~2500mm)的复频和双频吸收的光谱特性I17-18,非常适合于有机物的定量分析。然而,近红外波段的位置往往受到许多因素的影响,如温度、被测物体的漫反射和折射等。,使得采集到的信号受到很多噪声的干扰,无法有效表征相应物质的特征。为了有效提取近红外光谱图像信号的本质特征,本文引入特征学习来学习光谱图像信息,提高回归模型的预测精度。

图片2.png图片3.png


图片4.png图片5.png


图片6.png

  对烧伤创面进行准确、深入的评估,可以减轻患者的痛苦和负担。近红外光谱作为一种简单、无创、有效的光谱检测工具,在烧伤深度诊断方面得到了许多专家的支持和研究。然而,目前基于近红外光谱图像的烧伤深度主要是通过生物学理论和光学理论来评估的,对于如何利用近红外光谱图像数据对创面进行定量深度检测还缺乏方法。因此,本文采用特征学习方法对近红外光谱图像数据进行挖掘,形成了一种基于近红外光谱图像特征学习的检测方法,以高效预测烧伤创面组织深度。本文的主要成果如下:


  ①针对烧伤深度的全场检测,提出了一种基于RSER-KNN集成回归模型的烧伤深度检测方法。首先对烧伤创面数据进行采集和数据预处理操作,利用PCA和LDA融合算法对样本的光谱数据信号进行特征学习,利用子空间集成的思想构建RSER-KNN集成回归模型。实验表明,在测试集的评价下,RSER-KNN模型具有很高的精度,每种样品的烧伤深度预测值都接近黄金标准值,其中平均相对误差低至6.7%。与其他算法相比,它具有较低的预测误差和较高的稳定性。RSER-KNN可以提供定量的烧伤信息和可视化深度的各种烧伤伤口。


  ②针对利用光学特征参数检测烧伤深度的可行性研究,本文利用漫反射模型理论提取了烧伤创面光学特征参数的分布图。结果可以间接反映整个创面组织的水含量系数、散射粒子大小和散射粒子浓度随烧伤深度变化的规律,可以为医生提供更多的病理诊断信息。


  ③针对烧伤创面的跨域烧伤深度检测,提出了一种基于深度迁移学习的跨域烧伤深度检测方法。本文基于NIRSI仪器,采集了A和B两个数据集,A为源数据集,B为目标数据集。首先利用A面源数据集样本对CNN回归模型进行预训练,得到高精度的深度预测结果。利用深度迁移学习方法,提高了B面目标域数据烧伤深度的预测精度,解决了跨域烧伤数据样本问题。实验结果表明,CNN网络在A点源数据集上的模型训练可以达到8.2%的平均相对损失,比控制算法高出2.6倍以上,验证了CNN模型高效的特征学习能力和预测能力。而深度迁移学习模型CNN-transfer在跨域B目标数据上可以达到平均相对误差低至6.0%,有效解决了烧伤样本的跨域问题。


高光谱相机系列

  • VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR高光谱分析系统
    VIS-NIR-SWIR(400-1700nm)高光谱分析系统单传感器光路实现(400-1700nm)高光谱探测;光谱分辨率小于18nm ;空间分辨率640;
  • 无人机高光谱激光雷达测量系统 FS64-UCR
    无人机高光谱激光雷达测量系统 FS64-UCR
    FS60-UCR系列无人机高光谱激光雷达测量系统是一款多功能无人机检测设备,集激光雷达和高光谱成像为一体,获得激光雷达和高光谱图像数据。
  • 便携式高光谱相机FSIQ系列
    便携式高光谱相机FSIQ系列
    FigSpec®FSIQ系列便携式高光谱相机是一款内推扫高光谱相机,波长范围400-1700nm,光谱分辨率(FWHM)可达2.5nm,空间分辨率高达1920*1920,光谱通道数量高达1200,通过5寸触摸屏显示和操作,分辨率1280*720主要功能工作模式:高精度成像测量模式、PC操控模式、线扫描模式用户调整:用户可以对曝光时间,合并方式,ROI区域进行
  • 云台高光谱测量系统
    云台高光谱测量系统
    FS系列云台高光谱测量系统是结合高光谱相机和云台设备的测量系统,可实现对拍摄区域的实时监控,支持自动扫描,网络连接。可应用于河道、湖泊、林业、农业、塔基等基于高光谱技术的分析检测领域产品特点光谱范围:390-1010nm光谱通道数:1200光谱分辨率:2.5nm云台水平范围:360°云台垂直范围:正90°~负90°网络连接:支持
  • FS-50系列多光谱相机
    FS-50系列多光谱相机
    FigSpec FS-50系列是彩谱科技公司推出的新一代无人机载多光谱相机,适配大疆M350/M300RTK飞行平台,具有30-180个光谱通道,2K分辨率。 满足精准农业、军事国防和国土安全、灾害防治林业监测、河湖生态、目标识别等多种行业应用需求。一、产品特点●超高光
  • 高光谱相机(线扫描) FS1X系列
    高光谱相机(线扫描) FS1X系列
    FigSpec®FS1X系列高光谱相机包含可见光(400-700nm)、可见光近红外(400-1000nm)、可见光近红外短波红外(400-1700nm)、短波红外(900-1700nm)、短波红外(1400-2500nm)5种光谱区域,广泛应用于印刷,纺织等各种工业制品的表面颜色纹理检测(颜色测量单像素重复性可达dE*ab<0.1),成分识别,物质鉴别,机器视觉,农产品品质等领域。
  • 成像高光谱相机 FS2X系列
    成像高光谱相机 FS2X系列
    FigSpec®系列成像高光谱相机采用高衍射效率的透射式光栅分光模组与高灵敏度面阵列相机、结合内置扫描成像及辅助摄像头技术,解决了传统高光谱相机需外接推扫成像机构及调焦复杂等难以操作的问题。可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像的快速采集。可见光/近红外:· 光谱范围:400-1000
  • 显微高光谱成像系统
    显微高光谱成像系统
    ·将显微镜及成像光谱仪两者的优点结合,可以随时对显微图像进行高光谱数据采集。·可以对现有的生物显微镜、荧光显微镜、体视显微镜、金相显微镜等进行改造,方便地把普通显微镜改造为高光谱显微镜。·客户可以根据需求定制显微镜型号。· FigSpec?系列成像光谱仪在内部集成了视觉相机和高光谱相机,可以使
  • 机载高光谱相机FS60-C系列
    机载高光谱相机FS60-C系列
    ● 采用大疆M300RTK(大疆M600Pro可选)作为飞行承载平台;● 采用高信噪比超高速光谱扫描成像器件,提供高稳定性的光谱图像采集;● 采用自研的高效率低功耗图像处理算法,大大延长了整机飞行时间,降低了系统功耗;● 通过实时测量植物、水体、土壤等地物的光谱图像信息,应用与精准农业,农作物长势与产

Copyright © 2023 彩谱科技(浙江)有限公司 All Rights Reserved. ©️ 版权所有 浙ICP备2021027346号-7

  • 首页
  • 产品
  • 案例
  • 联系
  • 顶部